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Velocity and passive-scalar spectra for turbulent fields generated by a forced three- 
dimensional simulation with 1283 grid points and Taylor-microscale Reynolds 
numbers up to 83 are shown to have convective and diffusive spectral regimes. One- 
and three-dimensional spectra are compared with experiment and theory. If 
normalized by the Kolmogorov dissipation scales and scalar dissipation, velocity 
spectra and scalar spectra for given Prandtl numbers collapse to single curves in the 
dissipation regime with exponential tails. If multiplied by ki the velocity spectra 
show an anomalously high Kolmogorov constant that is consistent with low 
Reynolds number experiments. When normalized by the Batchelor scales, the scalar 
spectra show a universal dissipation regime that is independent of Prandtl numbers 
from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy- 
transfer spectra in which distinct pulses propagate to high wavenumbers. 

1. Introduction 
The most common tools for describing isotropic, homogeneous turbulence are 

spectra. In particular, theoretical, experimental, and numerical investigations of the 
k-8 inertial subrange of the kinetic-energy spectrum, based on the second similarity 
hypothesis of Kolmogorov (1941), have become a small industry. A similar 
hypothesis predicts that the variance spectrum of a passive scalar has an inertial 
subrange (Oboukov 1949; Corrsin 1951), where examples of passive scalars are 
temperature and salinity, if buoyancy is neglected, and chemical reactants. 
Experiments strongly support the existence of a k-; inertial subrange for both the 
kinetic-energy and scalar-variance spectra (see Champagne 1978 for the velocity ; 
references for the scalar are in Q 4). 

But the inertial subrange is only one part of the spectra. There are dissipation 
regimes and for the passive scalar there is an inertial-diffusive regime associated with 
low Prandtl numbers (high scalar diffusivity) and a viscous-convective regime 
associated with high Prandtl numbers (low scalar diffusivity). While all of these 
regimes have been measured experimentally to varying degrees of reliability, direct 
numerical simulations of turbulence would seem to be an even better means of 
determining these spectra. Conditions can be carefully controlled and because entire 
fields are available, one- and three-dimensional spectra can both be determined and 
higher-order spectra that are inaccessible to experiments can be found. However, the 
simulations have generally been restricted by small meshes to very low Reynolds 
numbers and the evidence for inertial regimes is marginal (Brachet et al. 1983). A case 
in which a short inertial subrange is found is the forced spectral simulations of Kerr 
(19854 with up to 1283 mesh points and Taylor-microscale Reynolds numbers R, up 
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to 83. In  this paper the numerical data base used by Kerr ( 1 9 8 5 ~ )  is examined 
further. First, one- and three-dimensional velocity spectra are presented and 
comparisons with low Reynolds number experiments made to show that this 
simulation represents low Reynolds number turbulence, a conclusion supported by 
derivative statistics in Kerr (1985a). Then dissipation and scalar variance regimes 
that are difficult to measure experimentally are discussed and compared to 
theoretical spectra. Finally, kinetic-energy transfer spectra are used to discuss 
intermittency in Fourier space. Some comparisons between the theoretical regimes 
and simulations are made where the conditions required by t,he theoretical regimes 
are not fully met by the simulations in order to provide guidance for future numerical 
experiments. 

The spectral regimes of the kinetic energy and scalar variance are found in 
wavenumber bands determined by the largest scales of turbulence L (equation (21 b ) )  
and three dissipation scales. These dissipation scales and the associated scaling laws 
for the spectral regime of the kinetic energy and scalar variance depend on the 

(1) 

kinetic-energy dissipation rate 
E = 2 ~ e : ~  - -- dt ( E ) ,  d 

the scalar-variance dissipation rate 

( 2 )  

the viscosity w, and the Prandtl number, u = W / K ,  where E = $(u,u,) is the kinetic 
energy and E,  = (02) is the scalar variance. The dissipation wavenumbers and 
corresponding lengthscales are the Kolmogorov scale 

d X = 2 K 0 : i  - -- dt ( E o )  

k,  = ( E / W ' ) ;  = l / q ,  

k, = ( E / W K ' ) $  = k , d  = l/q, the Batchelor scale 

and the Oboukov-Corrsin scale 

k,, = ( e / K 3 ) ;  = k,$ = l / qoc .  ( 3 4  
The Kolmogorov inertial subrange of the kinetic-energy spectrum 

E(k)  = &&l 141 
is found experimentally between the turbulent scale L (equation (21 ) )  and the 
Kolmogorov scale q in high Reynolds number incompressible fluids. The first 
Kolmogorov similarity hypothesis is obeyed when all velocity and length scales are 
determined by the energy dissipation 8 and viscosity w and for (4) to  satisfy 
Kolmogorov scaling the dimensionless Kolmogorov constant a should be universal 
when high Reynolds number spectra are scaled by 

(ew5)f (5) 
and the wavenumbers are scaled by q. The dissipation regime usually refers to k > 
0.2kk and while it will not obey (4), it should obey Kolmogorov scaling under ( 5 ) .  All 
the velocity spectra to be discussed are scaled in this manner to determine if they 
obey Kolmogorov scaling, even if they do not have an inertial subrange. Pao (1965) 
predicts a dissipation regime proportional to exp ( -  (aqk) ; ) ,  but based on analyticity 
(Von Neumann 1949; Frisch & Morf 1981) and closure (Kraichnan 1959) i t  has been 
suggested that the dissipation regime should be closer to a simple exponential like 
exp ( - aqk). 
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Oboukov (1949) and Corrsin (1951) argue that the inertial-convective subrange of 
the scalar-variance spectrum (1/L < k < koc) should be scaled by the scalar 
dissipation x, the kinetic-energy dissipation e and the viscosity v in a manner 
analogous to Kolmogorov scaling : 

E, (k )  = a , X e - k g .  (6) 
Kolmogorov scaling is obeyed if the Oboukov-Corrsin constant a, is universal and 
independent of Prandtl number when the high Reynolds number scalar-variance 
spectra are normalized by 

x E ( E V 5 ) i .  (7) 

The spectrum between the inertial-convective subrange and the scalar-dissipation 
regime is determined by the Prandtl number and the ordering of the wavenumber 
cutoffs. 

For high Prandtl number (low diffusivity), the wavenumber cutoffs are ordered as 

‘k ‘ B  < k ~ c  

and Batchelor (1959) predicts that the viscous-convective spectrum, which is 
between the Kolmogorov wavenumber and the Batchelor wavenumber, obeys 

where Jy3( is the average value of the least principle rate of strain. The dissipation 
regime for all Prandtl numbers, like the dissipation regime of the kinetic-energy 
spectrum, is now believed to be an exponential like exp ( -  k ) ,  but Kraichnan (1969) 
suggests that the k-l power law in (8) is rigorous. 

For low Prandtl numbers (high diffusivity) the wavenumber cutoffs are ordered as 

koc < kB < kk 

Between k,, and k,, Batchelor, Howells & Townsend (1959) suggested that the 
inertial-diffusive spectrum would have the form 

17 

E,(k) = i a x ~ - ~ ~ f k - r  (9 a)  

E,(k)  = $E(k)  X K - ~ ~ - ~ .  (9 b )  

for an ideal -2 energy spectrum. For an arbitrary energy spectrum the prediction is 

However, Gibson (1968 b)  predicts that a t  intermediate wavenumbers, between k,, 
and k,, the spectrum will follow 

(10) E, (k )  = a , ;k  x -3 

and that the k-q regime will be valid only between k ,  and kk. The spectral regime 
between k,, and k ,  is labelled the strain-rate-diffusive regime and when normalized 
by (7) the spectral constant for (10) is aG g. Both theories agree that there should be 
a - inertial-convective regime for wavenumbers below the Oboukov-Corrsin cutoff 

Two secondary predictions based on the theory of Gibson (1968a, b )  are that the 
mixed-derivative skewness (22) is independent of Prandtl number (Clay 1973) and 
that in the dissipation regime, scalar spectra will depend only upon the scalar 

k0C. 
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dissipation x, the rate of strain (slv);, and the Batchelor scale yB. With this scaling, 
scalar dissipation spectra scaled by . . ,  

will be independent of the Prandtl number. This is called Batchelor scaling because 
it was first proposed for large Prandtl numbers by Batchelor (1959). 

Theories are usually formulated for three-dimensional spectra, but experi- 
mentalists usually present one-dimensional spectra because single hot-wire ane- 
mometers measure only the longitudinal one-dimensional kinetic-energy spectrum 

+,(kl) = (u~(lkl l )+u~(- lkl l ) )~ (12) 

E,(kl) = W(Ik1 l )  + u2( - lkll)) (13) 

although with crossed-wire probes the full one-dimensional kinetic-energy spectrum 

can also be measured. In isotropic turbulence these spectra are related to the three- 
dimensional, kinetic-energy spectrum by 

and 

In the inertial subrange g1(kl) = a1$k;% and El(kl)  = ai$k;%, 
dimensional Kolmogorov constants are 

a; = $, a1 ==a. 18 

In  Kerr (1985 b)  some full one-dimensional kinetic-energy spectra (13) for these 
simulations are plotted along with one experimental curve, but here only the 
longitudinal spectra (12) are discussed because more experiments are available for 
comparisons over a wider range of Reynolds numbers. 

The onc-dimensional scalar-variance spectrum, which can be measured with a 
single temperature probe, is related by isotropy to  the three-dimensional spectrum 
hv 

In the inertial subrange T(k,) = agl X E - ~ ; % ,  where the one-dimensional Obou- 
kov4orrsin constant is 

aBl = 0 . 6 ~ ~ .  (18) 
A major aim of turbulence theory is to successfully predict the constants for these 

spectral subranges, while an objective of the experimentalists is to provide the 
theorists with reliable values for the constants. One approach to  making theoretical 
predictions is to use a spectral closure. For example, Herring & Kraichnan (1979) use 
a variant of the direct-interaction approximation (DIA, Kraichnan 1959) and 
calculate the three-dimensional Kolmogorov constant to be 1.72. Some comparisons 
between these simulations and eddy-damped quasi-normal Markovian model 
predictions (EDQNM, Orszag 1970) from Herring et al. (1982) are discussed here to 
show where differences between these results and high Reynolds number turbulence 
are expected. 
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Another theoretical approach is to make assumptions about the cascade of energy 
to high wavenumbers. If the cascade is space-filling one expects a k-i inertial 
subrange. But it is well known that the dissipation is intermittent and by making 
assumptions about spatial intermittency Kolmogorov (1962) and Frisch, Sulem & 
Nelkin (1978) predict small corrections to the -5 law. Siggia (1978) and Kerr & 
Siggia (1978) discuss temporal intermittency, but make no spectral predictions. It 
will be shown that temporal intermittency qualitatively similar to that observed by 
Kerr & Siggia (1978) is an important aspect of the simulated spectra. 

One topic that is not discussed here is the helicity H = u - w .  Kerr (1987) shows that 
the velocity forcing used for these simulations is strongly helical, but that helicity 
does not play a strong role in the energy cascade. Whether this has a strong effect on 
the spectra to be discussed can only be determined by doing calculations where the 
forcing has zero helicity. To determine whether the helicity provides any constraint 
upon the energy cascade and to determine the direction of the helicity cascade, 
helicity transfer spectra would need to be calculated. 

2. Numerical method 
The governing equations of the simulation are the incompressible Navier-Stokes 

equation for the velocity and the transport equation for a passive scalar. The 

(19) 
Navier-Stokes equation is 

au VP -+u.vu = --+vv2u, 
at P 

V ’ u  = (0 incompressibility), 

and the convective form of the scalar equation is 

In the absence of viscosity v and diffusivity K the equations conserve two positive- 
definite quadratic invariants : the kinetic energy of turbulent fluctuations E = +(ui 
ut) ;  and the scalar variance E,  = (0”. The fundamental dimensionless parameters 
that determine our spectra are the Taylor-microscale Reynolds number, R, = Uh/v, 
and the Prandtl number u = V / K ,  where U is the characteristic velocity of the 
turbulence, $P = E and A = (u$/( (au,/clx,)2)~ is the Taylor microscale. The time 
span of the statistical samples to be discussed should be compared with the eddy- 
turnover time 

where L = - k-lE(k) dk (21 a ,  b)  4E 3R i L 
t,  = E ,  

is the integral lengthscale of the flow (Batchelor 1971). 
The numerical code used is a three-dimensional pseudospectral code with periodic 

boundary conditions, 1283 mesh points, and no subgrid modelling of the small scales. 
With a large-scale forcing, Taylor-microscale Reynolds numbers as high as 83 can be 
simulated with full resolution of the smallest scales. Prandtl numbers are restricted 
in our simulations to less than 1.0 in order to maintain good resolution of the small 
scales and to greater than 0.1 in order to allow a wide enough range of scales to 
identify spectral regimes. Details of the simulations are given in the table 1,  with the 
case numbers corresponding to those in Kerr ( 1 9 8 5 ~ ) .  Additional details about the 
algorithms, computed usage, aliasing control, and forcing may be found in Kerr 
(1985 a) .  
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Run Mesh RA U kk k, koc t e  

F22 64' 55.9 1 .o 27.2 27.2 27.2 1.05 
F23 Ma 55.9 0.5 27.2 19.2 16.2 1.05 
P24 64a 55.9 0.1 27.2 8.6 4.8 1.05 
F25 12B3 82.9 1 .o 45.7 45.7 45.7 0.85 
F26 12s3 82.9 0.5 45.7 32.3 27.2 0.85 
F21 1 B3 82.9 0.1 45.7 14.5 8.1 0.85 

TABLE 1. Characteristics of the simulations 

Because the equations are forced, a statistically steady state can be maintained 
and time averages of the spectra obtained. Figures 1-8 represent averages over at 
least two eddy-turnover times for each Reynolds number. To show Kolmogorov 
scaling figures 1-7 have been normalized by the Kolmogorov microscales and scalar 
dissipation (5 ) ,  (7) and have been multiplied by kf so that the inertial subrange would 
appear as a line with zero slope in these figures. Figure 8 uses Batchelor scaling ( 1  1).  

The wavenumbers included in a three-dimensional wavenumber shell k, are all k 
such that k, < Ikl < k, + 1.  One problem with the calculation of the three-dimensional 
spectrum is that the number of modes in each shell is not a smooth function of 
wavenumber. To produce a smoother curve, the energy in each shell of the three- 
dimensional spectra to  be discussed has been divided by the number of modes in the 
shell and multiplied by the volume of the shell, $ ~ ( k , , + l ) ~ - k ; ) .  The wavenumber 
plotted has been weighted by an estimate of the energy within each shell. For the 
first, forced shell, the plotted wavenumber is 4. For the higher shells the weight uses 
the root-mean-square of a k-i spectrum summed over the modes within a shell. These 
weightings have been applied to  figures 1,  2, 4, 6, 7 and 8. 

3. Velocity spectra 
Figure 1 replots figure 2 of Kerr (1985~)  using the weighting just described and a 

log-log scale to compare the calculated, three-dimensional, kinetic-energy spectra 
and scalar-variance spectra for several Prandtl numbers. In  this figure the highest 
Reynolds number kinetic-energy spectrum appears to have one decade of a 
Kolmogorov inertial subrange with a Kolmogorov constant of about 2. While this is 
encouraging, to prove consistency with the Kolmogorov hypothesis, simulated 
spectra for several Reynolds numbers should collapse to a single curve. To show the 
trends in this direction figure 2 uses a linear-logarithmic scale to plot kinetic-energy 
spectra for all four simulated Reynolds numbers. Except for the lowest Reynolds 
number, all of the spectra in figure 2 collapse to a single form in the dissipation 
regime that agrees with the EDQNM calculation of Herring et al. (1982). Below the 
dissipation regime (qk < 0.4), the spectra seem to be approaching a limit as the 
Reynolds number increases, but figure 2 does show that the inertial subrange plotted 
in figure 1 is partially an illusion due to  the plotting technique. Although figure 2 
does not show a well-defined inertial subrange, the short inertial range that is seen 
suggests that there is a realistic turbulence cascade feeding the dissipation regime. 

To get better comparisons with experiment, one-dimensional spectra must be 
plotted. Figure 3 presents the calculated, longitudinal, one-dimensional, kinetic- 
energy spectrum (12) for our two highest Reynolds numbers and comparisons with 
several experiments. In the dissipation range the computed and low Reynolds 
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lo-' 10-1 10" 10' 

FIGURE 1. Three-dimensional kinetic-energy and passive-scalar spectra for R, = 82.9 normalized 
by the Kolmogorov microscales and the scalar-variance dissipation, x, (5), (7) and multiplied 
by kg. 0, kinetic energy; X ,  u = 1.0; +, u = 0.5; A, u = 0.1. 
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FIGURE 2. Three-dimensiopal kinetic-energy spectra normalized by the Kolmogorov microscales 
and (5) and multiplied by ka. 0, R, = 82.9; A, R, = 55.9; +, R, = 37.2; x , R, = 18.4; E, EDQNM 
calculation by Herring et al. (1982). The logarithmic-linear scale is used to show the convergence 
properties. 
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FIGURE 3. Longitudinal one-dimensio:al kinetic-energy spectra normalized by the Kolmogorov 
microscales and (5) and multiplied by ks. 0, R, = 82.9; A, R, = 55.9. Experimental spectra are M, 
Mestayer et al. (1983) at R, = 561 : S, Champagne (1978), R, = 130; and G,  Champagne et al. (1977) 
R, = 15000. 

number experimental spectra agree closely, supporting the claim of Kerr (1985~)  
that this simulation reproduces the statistics of the dissipation regime. In  the inertial 
subrange the computations and experiments do not agree, although both the 
computations and two low Reynolds number experiments by Mestayer, Chollet & 
Lesieur (1983) and Champagne (1978) have Kolmogorov constants that are higher 
than the generally accepted value of about 01 = 1.5 or a1 = 0.49 (Champagne 1978). 
The data from Mestayer et al. (1983), labelled there as ME.MO.MI.IV2, are at R, = 
561 and agree particularly well with the simulations. The data from Champagne 
(1978) are for a homogeneous shear a t  R, = 130. In  Kerr (1985a, b)  this anomalously 
large Kolmogorov constant was attributed to a bump that has been seen in some high 
Reynolds number experiments of Champagne (1978) and theoretical predictions such 
as EDQNM calculations discussed in Mestayer et al. (1983). But the comparisons with 
low Reynolds number experiments now suggest that most of the anomalously large 
Kolmogorov constant in these computations is due to the low Reynolds number 
effect discussed above. 

Although only low Reynolds number experimental spectra can properly be 
compared with the numerical results, because theory and closures suggest that 
dissipation spectra should be universal, figure 3 includes one high Reynolds number 
experimental curve from Champagne et al. (1977) at R, = 13000. The anomalously 
high Kolmogorov constant is the bump discussed by Kerr (1985a, b ) .  At 
wavenumbers below those plotted the Kolmogorov constant a1 is closer to the 
accepted value of about 0.5 and the difference in the far dissipation regime between 
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FIGURE 4. Three-dimension$ kinetic-energy spectra normalized by the Kolmogorov microscales 
and (5) and multiplied by b. 0,  R, = 82.9; A, R, = 55.9; +, R, = 37.2; X ,  R, = 18.4. E is an 
EDQNM calculation by Herring et al. (1982). The linear-logarithmic scale is used to show the 
exponential dissipation tail. 

this spectra and the low Reynolds number experimental and simulated spectra is 
consistent with a set of older data compiled by Chapman (1979) that was used for 
comparison by Kerr (1985b). If a correction to the Taylor frozen-turbulence 
assumption suggested by Lumley (1965), and implemented by Champagne (1978), 
were shown, the difference in the dissipation regime would be less, but still 
significant.? From comparisons of figures 2 and 3 it can be seen that there is also a 
difference in the dissipation regime between Champagne et al. (1977) and the 
predictions of EDQNM, both of which are supposed to be high Reynolds number 
results. These differences suggest that either some aspect of measuring high Reynolds 
number spectra is not understood or that the universality of Kolmogorov scaling for 
dissipation spectra is limited. 

Figure 4 uses a logarithmic-linear scale to plot the three-dimensional kinetic- 
energy spectra for R, = 56 and 83 because on the basis of analyticity arguments 
referenced i t  is believed that the far dissipation regime should be a simple 
exponential. Our data support that conclusion with B = 6.5k0.1  and a = 5.1 + O . l  
when Bexp (-a$) is fitted to (7k)8E(k)/(cv5)f.  This is consistent with values of B = 
8.4f0.6 and a = 4.9f0.1 found by Kida & Murakami (1987) for a symmetrized 
decaying calculation. They also make comparisons with experimental data by 
Sreenivasan (1985). 

7 Mestayer et al. (1983) contends that this correction should not be used. 

11-2 
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4. Passive-scalar variance spectra 
In  the previous section it was shown that the dissipation regime of the kinetic- 

energy spectrum converges and agrees with experiments. This suggests that this 
simulation can be reliably used to study scalar-dissipation spectra, even though 
supporting experimental evidence for scalars is poor and cannot be used to verify the 
simulation. Because there is evidence for an inertial subrange in the velocity 
spectrum, qualified comparisons in figure 1 between scalar regimes for three Prandtl 
numbers, u = 0.1, 0.5, and 1.0, that overlap the inertial subrange can also be 
justified. To present different aspects of the scalar-variance spectra for the three 
Prandtl numbers in more detail figures 5-7 plot spectra for several Reynolds 
numbers. Kolmogorov scaling (7)  is used for all the scalar-variance spectra in 
figures 1, 5-7. 

Figure 5 shows the one-dimensional spectra for the two largest Reynolds numbers 
for u = 0.1 along with two theoretical predictions. The curve labelled B uses the full 
one-dimensional kinetic-energy spectrum (13) for R, = 83 in the second form of the 
k-y prediction (9b). The curve labelled G uses the k-3 prediction of (10) with a one- 
dimensional constant of 0.07, or a, = 2.1. For u = 0.02 (liquid mercury), Clay (1973) 
finds some evidence for a -? regime and an intermediate regime that would be 
consistent with the k-3 regime predicted by Gibson (1968 b ) .  Neither of these regimes 
appears distinctly in figure 5, which is not surprising because the three spectral 
cutoffs (3a-c) should be widely spaced in order to observe the predicted low Prandtl 
number regimes, and this would require high Reynolds numbers and low Prandtl 
numbers. For the R, = 83 calculation the koc, k, and k ,  wavenumber cutoffs are a t  
~k = 0.18, 0.32 and 1.0 respectively in figure 5. I n  addition all of these regimes 
overlap the poorly defined inertial subrange and are probably strongly influenced by 
the problems with the scalar forcing to be discussed next. Nevertheless, because it is 
difficult to make these measurements experimentally and because secondary 
predictions of the theory of Gibson are supported by this simulation and experiments, 
some comment is valid. One-dimensional spectra are plotted in figure 5 in order to 
allow easier comparisons with future experiments and to minimize the difficulties 
with normalizing three-dimensional spectra and the errors introduced by the forcing. 

The first point is that  an inertial-convective subrange (6) for wavenumbers below 
the Oboukov-Corrsin cutoff k,, is not found in figure 5, even though k,, is within the 
simulation. This is expected because the dissipation peak of the velocity spectrum 
typically occurs closer to O.2kk than the order of magnitude estimate k, and all 
spectral regimes might be expected to be found a t  lower wavenumbers than their 
order of magnitude estimates would predict. The second point is that while the --? 
prediction does match the simulations a t  very large wavenumbers and is consistent 
with Chasnov, Canuto &, Rogallo (1988)) there is a long transition from this regime 
to the lowest wavenumber of the calculation that would be consistent with the 
strain-rate-diffusive prediction of Gibson (1968 b ) .  The transition wavenumber where 
the prediction of ( 9 b )  begins to depart from the simulated spectra is very close to the 
Batchelor cutoff ( 3 b )  of &, or 0.327 for u = 0.1, as predicted by Clay (1973). While 
this alone is not sufficiently strong evidence to favour the - 3  prediction of Gibson 
(1968b), figure 8 will present evidence for one of the secondary predictions of that 
theory. In  addition, Kerr (l985a) finds that the mixed-derivative skewness 
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FIGURE 5. One-dimensional passive scalar spectra for CT = 0.1 normalized by $he Kolmogorov 
microscales and the scalar-variance dissipation x with (7) ,  and multiplied by kf. 0, R, = 82.9; 
x , R, = 55.9. First mode is not plotted for each R,. B, -v prediction (96); G, - 3  prediction (10) 
with a, = 2.1. 

is independent of both the Reynolds number and Prandtl number and equal to -0.5 
in these simulations, which is consistent with a prediction of Clay (1973) that is based 
on the theory of Gibson (1968a, b). Gibson & Kerr (1987) discusses this and 
additional computational and experimental evidence that supports that theory. 

To get better comparisons with the low Prandtl number theories a wider range of 
scales needs to be simulated. This requires larger Reynolds numbers, since simply 
lowering the Prandtl number on a l2g3 mesh with a low wavenumber forcing would 
put the Oboukov-Corrsin wavenumber /Ioc in the regime where the forcing dominates. 
Increasing the Reynolds number on a 1283 mesh would imply sacrificing some small- 
scale resolution, but this should not affect the behaviour a t  the Oboukov-Corrsin 
scafe rloc and Batchelor scale qB when the Prandtl number is small. 

In figure 6 three-dimensional scalar-variance spectra are plotted for c = 0.5 for the 
same four calculations and Reynolds numbers used in figure 2. A linear scale is used 
for the scalar variance to show how well scalar-variance spectra converge for 
different Reynolds numbers and determine whether a - g inertial-convective 
subrange has been calculated. It is important to use a linear scale for a t  least one 
Prandtl number, just as it was important for the velocity in figure 2,  and u = 0.5 is 
used for this demonstration because no subranges in the scalar-variance spectrum are 
expected besides the dissipative range and the - 3 inertial-convective subrange (6), 
for which there is some evidence in figure 1. Figures 4 and 6 in Kerr (19856) show 
similar scaling properties for c = 0.1 and 1.0 a t  all the simulated Reynolds numbers. 
As was true for the velocity, in the dissipation regime the higher Reynolds number 
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F I ~ U R E  6. Three-dimensional passive-scalar spectra for (r = 0.5 normalized t y  the Kolmogorov 
microscales and the scalar-variance dissipation x with (7) and multiplied by ks. First mode is not 
plotted for each R,. 0,  R, = 82.9; A, R, = 55.9; +, R, = 37.2; x , R, = 18.4. The logarithmic- 
linear scale is used to show the convergence properties. 

spectra converge to a form that is independent of Reynolds number. But in the 
inertial-convective subrange the convergence is poorer for the scalar than it was for 
the velocity in the inertial subrange. Part of this might be related to the forcing since 
a t  the third wavenumber shell there is a sharp break for each Reynolds number in 
figure 6 and for the other Prandtl numbers in figure 1. The best value for the -?j 
OboukouvXorrsin constant from figure 6 would be ag = 1.0, or about half the 
Kolmogorov constant, The one-dimensional constant, a4 x 0.6, (18), is consistent 
with a wide range of experimental values (Champagne et al. 1977; references in Pa0 
1965; Clay 1973 and Monin & Yaglom 1975, p. 511). Figure 1 shows that a t  low 
wavenumbers, spectra for CT = 0.1 and 1.0 might be converging to a similar value for 
a@. This is expected if the value of the scalar diffusivity K does not have a significant 
effect on the inertial-convective subrange. 

For high Prandtl numbers (low scalar diffusivity) there is strong experimental 
support for a k-' subrange (8) (see Monin & Yaglom 1975, p. 513). u = 1.0 (figure 7)  
is too low for this subrange, shown by the curve labelled B, to be observed fully, but 
scalar experiments for u = 0.7 (air) show a 'bump ' that looks like a short k-' (Hill 
1978). Therefore, it  is not surprising that a significant bump is observed in our 
calculated spectra for u = 1.0. An EDQNM theoretical prediction is shown for 
comparison. 

While Kolmogorov scaling might be independent of Prandtl number in the 
inertial-convective subrange, figure 1 shows that it does not apply to the dissipation 
regime, which is where the effect of Prandtl number is largest. Gibson (1968b) 
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FIQURE 7. Three-dimensional paasive-scalar spectra for cr = 1.0 normalized ky the Kolmogorov 
microscales and the scalar-variance dissipation x with (7) and multiplied by ks. First mode is not 
plotted for each R,. 0,  R, = 82.9; A, R, = 55.9; B, - 1 prediction (8) with arbitrary coefficient; 
E, EDQKM calculation by Herring et al. (1982). 

predicts instead that in the dissipation regime, Batchelor scaling (l l) ,  which is 
independent of Prandtl number, is obeyed, a prediction that is supported by the 
experiments of Clay (1973) for Prandtl numbers from 0.02 (liquid mercury) to 7.0 
(water). Figure 8 replots the scalar spectra in figure 1 to show that this scaling also 
applies to the computational spectra for = 0.1 to 1.0 and Gibson & Kerr (1987) 
show that the experimental spectra of Clay (1973) and the computational spectra 
agree in the dissipation regime. Figure 8 is plotted on a logarithmic-linear scale to 
emphasize the exponential tail of the scalar spectra in the dissipation regime. Close 
comparison of figure 4 for the velocity and figure 8 suggests that, if an exponential 
tail has any validity for the scalars, substantial corrections are necessary. The best 
fit to exp ( - a r , ~ ~  k) has a = 3.3 k0.2.  Recall that (8) predicts k2 in the exponential. 

The theory that predicts Batchelor scaling is fundamentally based upon the 
assumption that at high wavenumbers the large-scale strain acting on relatively long 
timescales can dominate the scalar dissipation even though inertial range arguments 
such as Batchelor et al. (1959) suggest that a local, small-scale timescale should be 
used. Mechanistic models such as hot-spot pinching that incorporate this assumption 
are probably not an essential part of the original theory of Gibson (1968b). In fact 
Gibson, Ashurst & Kemtein (1988) finds that most of the mixed-derivative skewness 
in a two-dimensional simulation can be directly attributed to another mechanism 
which they label large-gradient-pinching. At low Prandtl numbers the assumption of 
Batchelor scaling can be valid only if the rate of strain is constant over scales large 
compared with Kolmogorov microscale 7. This claim would be consistent with the 
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FIGURE 8. Three-dimensional passive-scalar spectra for R, = 82.9 normalized by the Batchelor 
microscale, the scalar-variance dissipation x, and strain (1 1 ) .  First mode is not plotted for each cr. 
0, cr = 0.1 ; A, = 0.5; +, u = 1.0. The linear-logarithmic scale is used to show the exponential 
dissipation tail. 

graphics of Kerr (19854 where scalar-gradient structures are aligned with extended 
vortex structures whose large scale is several times 7. Finding that Batchelor scaling 
is valid for all Prandtl numbers is aesthetically pleasing because only one scaling is 
required, rather than two as originally suggested by Batchelor (1959) and Batchelor 
et al. (1959). 

5. Energy-transfer spectra 
Another spectrum that can be investigated only marginally with experiments, but 

can be determined exactly by simulations (Van Atta 1979), is the transfer spectrum, 
that is the rate at which energy is transferred, or cascades, into or out of a 
wavenumber band. The three-dimensional energy-transfer spectrum T,(k) is defined 
by the equation for the three-dimensional kinetic-energy spectrum 

(23) 
d 
dt 
--E(k) = Tu(k) -2vk2E(k). 

The integral of the energy-transfer spectrum is zero, J T,(k) dk = 0 (where the limits 
of all OUT integrals are from 0 to a), but the integral of the enstrophy-production, 
or mean-square vorticity-production, spectrum 

PQ = k2Tu(k) dk I 



Velocity, scalar and transfer spectra in numerical turbulence 323 

is non-zero and in isotropic turbulence is related to the velocity-derivative skewness 

For our forced simulations, an extra source term is added? but it appears at low 
wavenumbers and has negligible effect on the enstrophy production and velocity- 
derivative skewness. 

I n  Kerr (1985a), the transfer spectra were used with these equations, and similar 
equations for the scalar variance, to calculate the enstrophy production and scalar- 
dissipation production, and in turn the velocity-derivative skewness (25) and the 
mixed-derivative skewness (22). Here the three-dimensional energy-transfer spec- 
trum Tu(k) and the enstrophy-production spectra k2Tu(k) are used to highlight 
temporal fluctuations in the velocity field in wavenumber space. Production spectra 
are used in some of the figures instead of transfer spectra because the extra k2 factor 
emphasizes high wavenumbers more, but the same conclusions apply to the transfer 
spectra. In this analysis complete energy-transfer spectra for many different times 
will be given first. Then time correlations of the production spectra between different 
wavenumbers will be plotted to demonstrate the existence of pulses. Finally, time 
correlations of the dissipation spectra between different wavenumbers will be plotted 
to show the relationship of the pulses in the production spectra to  correlations in the 
dissipation spectra. 

Figure 9 plots the time evolution of the three-dimensional energy-transfer spectra 
for our largest Reynolds number simulation (F25) over a period of 1.4 eddy-turnover 
times t, (21 a). Similar behaviour is shown for simulation F22 in Kerr (1985 b).  The 
time span is given in simulation variables and should be compared with the eddy- 
turnover times in table 1. The transfer out of the first wavenumber band, which is 
always negative, has been divided by the magnitude of its time-averaged value so 
that i t  will fit in the figure, and the time-averaged energy-transfer spectrum is given 
a t  the top. Note the smooth behaviour of the time-averaged spectra as opposed to 
the bursting behaviour at individual times. The sign of the time-averaged spectrum 
is consistent with a Kolmogorov cascade. That is, in the lowest wavenumber band, 
which is the energy source, the spectrum is large and negative and a t  higher 
wavenumbers the spectrum is positive and almost constant until the dissipation 
regime. This is expected because in a statistically steady flow where (d/dt)E(k) = 0 
the time-averaged transfer spectrum will equal the dissipation spectrum and have a 
profile similar to  figure 1. Because the integral of the transfer is zero the negative 
transfer out of the first, forced shell will equal the sum of the positive transfers into 
the other shells. 

This behaviour, while consistent with the general phenomenology of a turbulent 
cascade, is not consistent with a steady cascade of energy to high wavenumber. In 
Kerr (1985 b )  the intermittent behaviour of the time-dependent transfer spectra was 
ascribed to pulses that propagate to higher wavenumber with time and lines were 
drawn to show how individual pulses move. Here that is left to the imagination of 
the reader and a more quantitative method is used to demonstrate the existence of 
the pulses. 

What is wanted is a way to show correlations between different wavenumbers a t  
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FIGURE 9. Three-dimensional enstrophy-production spectra for discrete times for simulation F25, 
RA = 82.9. Dashed lines indicate the wavenumber axis for each time. Solid lines indicate the 
spectra. Squares are the wavenumber axis for the time-averaged transfer spectrum. Circles are the 
time-averaged spectrum. The lowest mode for each spectrum is normalized by its time-averaged 
value. The figure spans simulation times from t = 2.1 to 3.3, with time increasing from bottom to 
top. This should be compared to the eddy-turnover time t,  = 0.85. 

different times that will show any correlations above the generally positive 
background associated with the time-averaged transfer. To do this 

where the brackets indicate an average over time, is compared with M Q ( k , ,  1,)  for the 
1283 spectra in figure 10. Because the simulation is analytically steady t ,  can be 
replaced by t ,+At ,  but because it is not known how the correlations scale in 
wavenumber, k, cannot be replaced by k,  + Ak and correlations must be obtained for 
every wavenumber shell. The correlations are normalized by the variance of the 
enstrophy production a t  the two wavenumbers. Contour maps of 

are shown for wavenumbers ko = 2-7 with k,  = 4 and 5 demonstrating the 
appearance of pulses most strongly. Presumably, the pulses are not as strong for low 
and high k, owing to interference with the forcing and dissipation. Figure 10 (c) shows 
that within the fluctuations of figure 9 there is a strong correlation which stays as 
large as 0.5 between different wavenumbers a t  different times, despite the large 
statistical sample a t  moderate wavenumbers ( k  < 10) in the 12@ simulation. If 
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statistics alone governed the size of the pulses, one might expect that their strength 
would decay as the square root of the sample size. Since the size of each wavenumber 
shell goes as k2 ,  this would imply that the pulses should decay as k-', which, apart 
from an initial drop from a correlation of 1 at Ak = 0 and At = 0, is not seen in 
figure lO(c) .  

Several features of the contour ridges in figure 10 are immediately apparent and 
require interpretation. These are the positive slope of the ridges, the narrowness of 
the ridges, where the ridges disappear a t  large wavenumbers, and their periodicity. 
The positive slope indicates that there is a forward cascade, but there is an 
insufficient range of wavenumbers to determine whether the slope would remain 
constant or change with increasing wavenumber in a higher Reynolds number 
calculation. A secondary characteristic that follows from a forward cascade is that 
there is a strong negative ridge at lower wavenumbers, which is equivalent to a later 
time or positive At at the same wavenumber. This represents an energy drain that 
feeds the strong positive ridge. The narrow width of the peaks is consistent with 
studies of wavenumber triads (Kraichnan 1976) that have been used to support 
assumptions of locality. But because these studies of triads effectively consider only 
At = 0 in figure 10, they are not inconsistent with non-local correlations between large 
At and Ak.  Non-locality has been considered in two recent spectral models. Yakhot 
& Orszag (1986) have used non-locality in their spectral model to support 
renormalization arguments and Kriachhan (1987) shows how non-locality can 
enhance the energy cascade in spectral closures and states that, if this property 
extends to the true NavierStokes dynamics, it might be related to flow structures 
that have strong correlations over several octaves in scale size. This suggests that, 
rather than continue the analysis of isotropic simulations such as this, a more fruitful 
approach is to investigate simple models for vortex interaction that have 
demonstrated non-local transfer and compare them with these results. This is 
discussed below. 

The effect of dissipation is evident in figure lO(b-f) as the strong central peak 
disappears at k ,  = 10 or y k ,  = 0.22. The strong fluctuations in figure 9 also disappear 
at k = 10. If one imagines multiplying the kinetic-energy spectrum in figure 1 by an 
extra factor of ki it  can be seen that this is also where the peak of the dissipation 
spectrum is. The periodic behaviour of the correlation in time for k, = 4 and 5 occurs 
on half an eddy-turnover time, which would be consistent with pulses forming from 
the low-wavenumber forcing on a convective timescale. The periodicity in 
wavenumber would then be determined by this periodicity and the rate the pulses 
move to high wavenumber, which is determined by the slopes of the ridges. Another 
possible explanation is that the periodicity is due to a periodic forcing, but Kerr 
(1985a) looked for periodicity in the forcing and while the samples were short, it was 
concluded that the forcing acted chaotically, 

Figure 11 uses the same correlation technique to compare the energy-dissipation 
spectrum a t  different times and wavenumbers for k,  = 4. Dissipation spectra at 
different times are not plotted in the manner of figure 9 because the fluctuations 
about the time-averaged spectra are so small, as shown by the lack of strong ridges 
in figure 11. But though sharp pulses in the disspation do not appear, by overlaying 
figures 10 (c) and 11 the reader can see that the peak of 0.360 in figure 11 is associated 
with the strong central ridge in figure lO(c) .  

Similar pulses have been observed before for time-dependent spectra in simple 
spectral models. Kerr & Siggia (1978) present a cascade model of turbulence where 
each band of wavenumbers with 2'-l < Ikl < 2z is modelled by a single complex 
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FIGURE 10. Contour plots of time-averaged correlations (28) between three-dimensional enstrophy- 
production spectra for k, = 2 to 7 (a to f )  respectively, and k, for time separations At from 
simulation F25. The sample is from t = 1.15 to 3.2 and At is from 0 to 0.7.  Times should be 
compared to the eddy-turnover time t ,  = 0.85. Solid lines are positive contours and dashed lines are 
negative contours. 
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FIQURE 1 1. Contour plot of time-averaged correlations between three-dimensional dissipation 
spectra for k, = 4 and k, for time separations At from simulation F25. The sample is from t = 1.15 
to 3.2 and At is from 0 to 0.7. Times should be compared to the eddy-turnover time t ,  = 0.85. Solid 
lines are positive contours and dashed lines are negative contours. 
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variable, and observed pulses of energy cascading to high wavenumbers, then 
dissipating. But there are some significant differences between their model and the 
Navier-Stokes equation, in addition to the severe wavenumber truncation. They 
found a third-order quantity that is non-zero, is conserved by the nonlinear terms, 
and serves as a Hamiltonian for their equations. The closest analogue to this term in 
the Navier-Stokes equation is the energy-transfer spectrum because it is also third 
order and because of similarities between the envelopes of the pulses of the 
Hamiltonian spectrum in Kerr & Siggia (1978) and the envelopes of the pulses in the 
energy-transfer spectra seen in figures 9 and 10. But the analogy falls short because 
the energy transfer is not a Hamiltonian and its integral is zero. The helicity is 
similar to the third-order Hamiltonian of Kerr & Siggia (1978) in that it is an 
invariant of the nonlinear term of the three-dimensional Navier-Stokes equation 
that is not positive definite, but the helicity is not a good analogue because it is 
quadratic. Kerr & Siggia (1978) showed that their model could be derived from a 
truncated form of Burgers' equation, a one-dimensional equation that is known to 
form shocks, and the pulses of Kerr & Siggia (1978) were identified with these shocks. 
Shocks do not exist in an incompressible flow, but this does suggest that the pulses 
seen here might be identified with the development of sharp structures in the velocity 
or vorticity field. 

The appearance of extended vortex structures in the graphics of Kerr (1985a) and 
Ashurst et al. (1987) might represent this process. Lundgren (1982) has a model for 
anisotropic dissipation structures that is based upon strained vortex tubes similar to 
those observed by Kerr (1985a). This model develops a k-' 3 s p ectrum without 
corrections when fluctuation pulses are averaged in time, even though the model is 
anisotropic and the pulses can be intermittent. A crude kP5 3 s p ectrum also occurs in 
this simulation along with large temporal and spatial intermittency, although large 
intermittency suggests that corrections to the -Q law of the type predicted by 
Kolmogorov (1962) and Frisch et al. (1978) would be expected if higher Reynolds 
numbers could be simulated. However, because those theories neglect temporal 
intermittency, which this simulation demonstrates is very strong, it is possible that 
intermittency can be consistent with a kf inertial regime with no corrections in the 
manner Lundgren (1982) predicts. 

While the model of Lundgren (1982) qualitatively resembles the structures of Kerr 
(1985a), Kerr (1987) shows that the most intense vortex stretching and enstrophy 
production is not associated with intense vorticity, but with regions where sheet-like 
structures are forming. In addition, Pumir & Kerr (1987) found that oppositely 
directed vortex filaments develop into vortex sheets whose separation goes to zero 
through a self-induction process, and Siggia (1984) has shown that anti-parallel 
pairing is a general property of three-dimensional vortex filaments. In figure 12 the 
enstrophy-production spectra for the three times discussed by Pumir & Kerr show 
that the positive peak of these spectra moves to higher wavenumbers with time; a 
behaviour consistent with figures 9 and 10 and a clear indication of non-local 
transfer. Together with recent work by Kerr & Hussian (1989) that suggests that  in 
the limit of zero viscosity the vortex sheets of Pumir & Kerr develop a singularity 
in a convective timescale, the similarities between the transfer spectra of figures 9 
and 12 lead to the suggestion that this simple vortex interaction could be a driving 
mechanism behind the turbulent energy cascade. 
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FIQURE 12. Three-dimensional enstrophy-production spectra for discrete times for simulation of 
oppositely directed vortex sheets discussed by Pumir & Kerr (1987). 0, t = 4;  0, t = 5; A, t = 6. 
Note how the positive peak moves to higher wavenumbers with time. 

6. Conclusion 
Spectra produced by numerical simulation of the incompressible Navier-Stokes 

equations and passive-scalar transport equations for a range of Reynolds numbers 
and Prandtl numbers have been studied in detail. With the qualification that an 
artificial forcing was used to maintain a statistically steady state, we believe that this 
is the first time a Kolmogorov inertial subrange has been simulated directly for an 
extensive period, despite being limited by the mesh size to moderate Reynolds 
numbers. In other cases where a Kolmogorov spectrum has been found either subgrid 
modelling was used (Siggia & Patterson 1978) or the spectrum was transient (Brachet 
et at. 1983). That the - Q  regime of Brachet et at. (1983) is extensive in wavenumber 
and that i t  occurs in a burst, possibly similar to the pulses discussed here, appears 
likely, but they obtain a Kolmogorov constant that is implausibly large (a = 4.0). To 
show that a spectrum has a valid Kolmogorov regime it should be shown, as in figure 
2, that Kolmogorov similarity consistent with experiments is obeyed, even if direct 
comparisons with experiments are not possible. 

The Kolmogorov constant that is found here is also too large, but is consistent with 
experimental trends a t  low Reynolds number and there is good agreement between 
the simulations and the low Reynolds number experiments in the dissipation regime. 
Based on this success, it is argued that that this simulation can be used to investigate 
several scalar-variance spectral regimes that are difficult to study experimentally. 
For v = 1.0 the simulations are shown to be consistent with the experimental 
observation of a k-l regime beginning at lower Prandtl numbers than expected. At 
low Prandtl numbers, while there is no solid evidence from these calculations as to 
whether the Batchelor et al. (1959) or the Gibson (1968 b)  theory for the spectral form 
at small Prandtl numbers is correct, two secondary predictions based on Gibson 
(19680, b)  are supported; the mixed-derivative skewness is constant and the scalar- 
dissipation spectra obey Batchelor scaling. 

Pulses are observed in the energy-transfer spectrum that have a profile similar to 
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those observed in the cascade model of Kerr & Siggia (1978). The pulses propagate 
linearly in time to  high wavenumbers and are distinct until the dissipation regime. 
This would suggest that large-scale intermittency is felt at the smallest scales, which 
is consistent with the vortex structures found in the graphics of Kerr (1985~)  and 
Ashurst et al. (1987). A physical-space structure that might be associated with the 
pulses has been identified by Pumir & Kerr (1987), where similar structures in the 
enstrophy-production spectra are produced by oppositely directed vortex sheets. 

The simulations that produced the spectra discussed here were the largest possible 
on present computers without extraordinary resources. Despite the limitations, 
satisfactory comparisons with experiments were obtained and some new insight was 
gained. As computer speed and memory increases, these results could be extended to 
higher Reynolds numbers and a wider range of Prandtl numbers, and eventually it 
would be unnecessary to use an artificial forcing to reach these Reynolds numbers. 

I wish to thank C. H. Gibson, R. S. Rogallo, A. Pouquet, and J. Herring for useful 
discussions. Computational support from NASA Ames Research Center is ack- 
nowledged. This work was completed under ARO MIPR No. 129-87. 
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